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1/ Problem

Medical ultrasound images can be reconstructed by solving an inverse problem y = Hx-+n,
where

o y € RKX1 gathers the sampled channel data;

o x € RN contains the ultrasonic reflectivity values at N pixel positions:

o H € R"*N is the model matrix containing the information of geometry and the

pulse-echo response;

o n € R stands for the white Gaussian noise with the standard deviation o©.
Traditional methods for solving the problem rely on using one or more regularization func-
tions such as the 1y norm, 1, norm, or wavelet-based terms. However, finding a satisfactory

balance between image contrast, spatial resolution, and speckle preservation is

difficult. These features are crucial for medical ultrasound images.

2/ Basic Concepts
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Figure 1 — The sampling process of Denoising Diffusion Probabilistic Models (DDPM)][3]
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Figure 2 — The sampling process of Denoising Diffusion Restoration Models (DDRM)|2]

DDRM leverages svd(Hg) to make the sampling process dependent on the inverse pro-

blem :
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There exist three cases :

e %4 0y, then we believe yg  ;

1

e 4> oy, then we assign weights to both xg and yj,;

o %4 = 400, then we believe Xg. (Xg = Vaxe, where Xg is generated from DDPM)

3/ Models

The traditional ultrasound inverse problem is
y=Hx+n

Because the size of y is always larger than that of x. We use matched filtering to transform

the inverse problem to

H'y = H'Hx + H'n (5)

And we consider a whitening operator C € SRN*N to further transform the inverse problem

to

CH'y = CH'Hx + CH'n. (6)

4/ C and svd(Hq)

Given that H'H*V = V*A,
for applying DDRM with Equ.5,
svd(Hy) = svd(H'H) = VAV!, 64 = o(H'n);

for applying DDRM with Equ.6,
C =Vt
svd(Hg) = svd(CH'H) = IA2V!
o4 = 0(CH'n) = o(n).

5/ Simulation Results

Results with the phantom "fetus"[1] :
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Figure 3 — The ground truth (left) and the restored images (right) reconstructed using
delay-and-sum (top), models in Equ.5 (middle) and in Equ.6 (bottom). The standard de-
viation of the additive noise increases from left to right. All images are presented in dB

units
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Figure 4 — Quantitative comparison using Structural SIMilarity (SSIM) and Peak Signal-
to-Noise Ratio (PSNR)

6/ Conclusion

Summary
e T[he inverse problem model with a whitening operator is well suited to DDRM.
e The impact of the whitening operator is more pronounced with high-level additive
noise.
Future Directions

e [he current generative model is trained on natural images, and the next step is to

train a new DDPM for medical ultrasound cases.
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