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1/ Problem
Medical ultrasound images can be reconstructed by solving an inverse problem y = Hx+n,
where

• y ∈ ℜK×1 gathers the sampled channel data ;
• x ∈ ℜN×1 contains the ultrasonic reflectivity values at N pixel positions ;
• H ∈ ℜK×N is the model matrix containing the information of geometry and the

pulse-echo response ;
• n ∈ ℜK×1 stands for the white Gaussian noise with the standard deviation σ.

Traditional methods for solving the problem rely on using one or more regularization func-
tions such as the l1 norm, l2 norm, or wavelet-based terms. However, finding a satisfactory
balance between image contrast, spatial resolution, and speckle preservation is
difficult. These features are crucial for medical ultrasound images.

2/ Basic Concepts

Figure 1 – The sampling process of Denoising Diffusion Probabilistic Models (DDPM)[3]

Figure 2 – The sampling process of Denoising Diffusion Restoration Models (DDRM)[2]

DDRM leverages svd(Hd) to make the sampling process dependent on the inverse pro-
blem :
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ȳd = x̄d + n̄d (4)
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There exist three cases :
• σd

si
⩽ σt, then we believe ȳd ;

• σd

si
> σt, then we assign weights to both x̄θ and ȳd ;

• σd

si
= +∞, then we believe x̄θ. (x̄θ = Vt

dxθ, where xθ is generated from DDPM)

3/ Models
The traditional ultrasound inverse problem is

y = Hx + n

Because the size of y is always larger than that of x. We use matched filtering to transform
the inverse problem to

Hty = HtHx + Htn (5)

And we consider a whitening operator C ∈ ℜN×N to further transform the inverse problem
to

CHty = CHtHx + CHtn. (6)

4/ C and svd(Hd)

Given that HtH∗V = V∗Λ,

for applying DDRM with Equ.5,
svd(Hd) = svd(HtH) = VΛVt, σd = σ(Htn) ;

for applying DDRM with Equ.6,
C = Λ

1
2Vt,

svd(Hd) = svd(CHtH) = IΛ1
2Vt,

σd = σ(CHtn) = σ(n).

5/ Simulation Results
Results with the phantom "fetus"[1] :

Figure 3 – The ground truth (left) and the restored images (right) reconstructed using
delay-and-sum (top), models in Equ.5 (middle) and in Equ.6 (bottom). The standard de-
viation of the additive noise increases from left to right. All images are presented in dB
units

Figure 4 – Quantitative comparison using Structural SIMilarity (SSIM) and Peak Signal-
to-Noise Ratio (PSNR)

6/ Conclusion
Summary

• The inverse problem model with a whitening operator is well suited to DDRM.
• The impact of the whitening operator is more pronounced with high-level additive

noise.
Future Directions

• The current generative model is trained on natural images, and the next step is to
train a new DDPM for medical ultrasound cases.
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