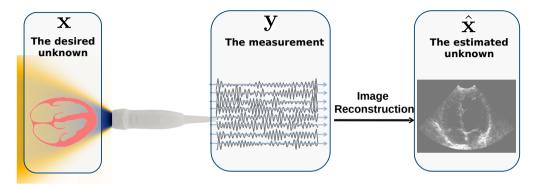
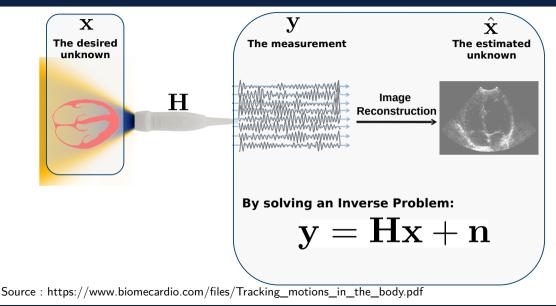

Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models DGM4MICCAI - 2023

Yuxin Zhang Supervisors : Clément Huneau, Jérôme Idier, Diana Mateus

Nantes Université, École Centrale Nantes, LS2N, CNRS, UMR 6004, F-44000 Nantes, France

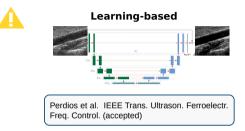

8 - October - 2023

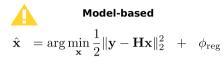
Source : https://www.biomecardio.com/files/Tracking_motions_in_the_body.pdf


Ultrasound Imaging

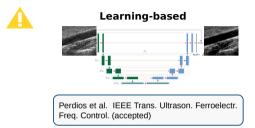
Source : https://www.biomecardio.com/files/Tracking_motions_in_the_body.pdf

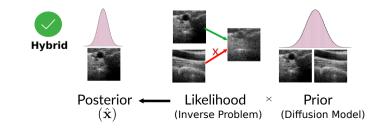
DGM4MICCAI - 2023

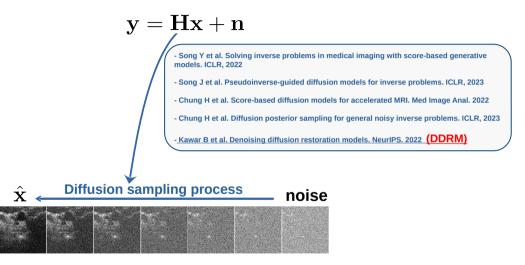

Image Reconstruction \rightarrow an Inverse Problem

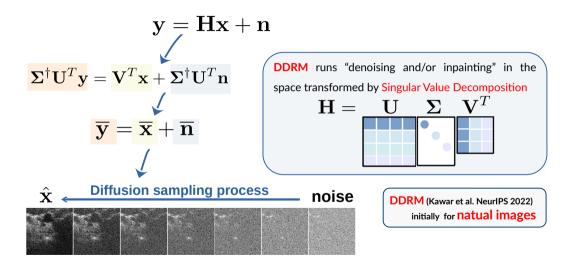


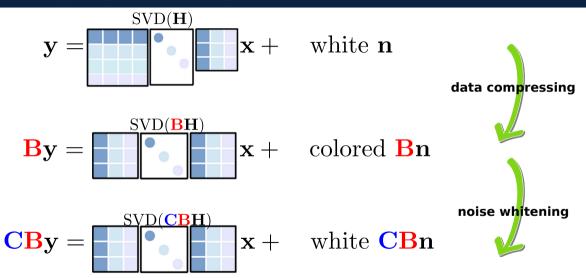
Ozkan et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018 Goudarzi et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022

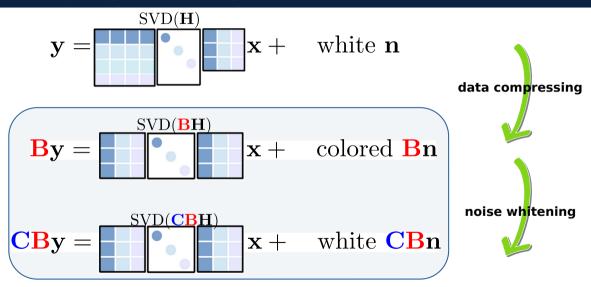

$$\widehat{\mathbf{x}} \qquad \begin{array}{c} \mathbf{Model-based} \\ \widehat{\mathbf{x}} &= \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{2}^{2} + \phi_{\mathrm{reg}} \end{array}$$


Ozkan et al. IEEE Trans.	Ultrason.	Ferroelectr.	Freq.
Control. 2018			
Goudarzi et al. IEEE Trans	. Ultrason	. Ferroelectr.	Freq.
Control. 2022			




Ozkan et al. IEEE Trans.	Ultrason.	Ferroelectr.	Freq.
Control. 2018			
Goudarzi et al. IEEE Trans	. Ultrason	. Ferroelectr.	Freq.
Control. 2022			




Denoising Diffusion Restoration Models

Data Compressing & Noise Whitening

Data Compressing & Noise Whitening

Natural Images

VS

Pre-trained on :

Figure – the ImageNet dataset (1,281,167 images) (?)

Ultrasound Images (SIGNED)

Fine-tuned on :



Figure – Examples of the self-acquired dataset (800 images)

Test set : PICMUS dataset (?) gives the observation y.

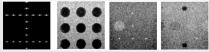
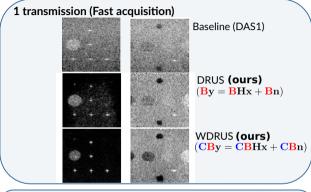
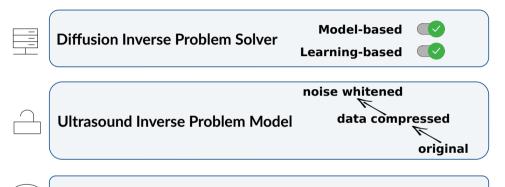



Figure – Examples of PICMUS reconstructed ultrasound images

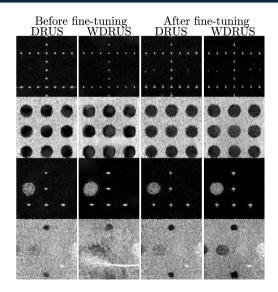
Yuxin Zhang (LS2N-SIMS)

DGM4MICCAI - 2023

Results



75 transmissions (Slow acquisition)



	Resolution (FWHM [mm]↓)		Contrast	
	Axial	Lateral	(CNR[dB] ↑)	
Baseline	0.51	1.21	8.15	
DRUS	0.26	0.69	12.9	
WDRUS	0.25	0.62	11.95	
Golden standard	0.49	0.59	12.05	

Fine-Tuning from a Natural-Image Diffusion Model

Thank you !

 $*\mathbf{B} = \mathbf{H}^{t}$

*C =
$$\Lambda^{-\frac{1}{2}} \mathbf{V}^{t}$$
, where $\operatorname{eig}(\mathbf{BB}^{t}) = \mathbf{V}\Lambda\mathbf{V}^{t}$
 $\operatorname{Cov}(\mathbf{CBn}) = \operatorname{E}\left[\mathbf{CBnn}^{t}\mathbf{B}^{t}\mathbf{C}^{t}\right] = \gamma^{2}\mathbf{CBB}^{t}\mathbf{C}^{t} = \gamma^{2}\mathbf{C}\mathbf{V}\Lambda\mathbf{V}^{t}\mathbf{C}^{t} = \gamma^{2}\mathbf{I}_{M}$

In summary

 $\begin{aligned} \mathbf{y} &= \mathbf{H}\mathbf{x} + \mathbf{n} \\ & \left| \underline{\mathbf{B}}\mathbf{y} = \mathbf{B}\mathbf{H}\mathbf{x} + \mathbf{B}\mathbf{n} \text{ (DRUS)} \right| \\ & \underline{\mathbf{C}}\mathbf{B}\mathbf{y} = \mathbf{C}\mathbf{B}\mathbf{H}\mathbf{x} + \mathbf{C}\mathbf{B}\mathbf{n} \text{ (WDRUS)} \end{aligned}$

ground truth (x) measurement (y)

Ву

