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Medical Ultrasound Image Reconstruction Workflow
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Inverse Problem of Ultrasound Image Reconstruction

y=Hx+n

x : reflectivity map H : model matrix y : channel data

m with the info. of : 8.2
\ -time delay {1

-pulse-echo response
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Solving the Inverse Problem of Ultrasound Image Reconstruction

Solving. y=Hx+n by & =argmin3|ly —Hx|]3 + ¢reg

State-of-the-art : ¢, based on the prior assumptions [1-4] / data-adaptive [5]

(1) Smoothness in frequency domain

1 [W;Dyabs(Fx)|2 + & [|[W;Dsabs(Fx) |2, where F = (4) Sparsity in spatial domain
DCT (Ozkan et al. [2018])

Tikhonov — ||x||, and ||x||2 (Szasz et al. [2016])
use envelope — || Env(x)||; (Zhang et al. [2021])

(2) Smoothness in spatial domain

ID1Env(x)||; + [D2Env(x)||, (Zhang et al. [2021]) (5) Data-adaptive
||Vx||§ (Bodnariuc et al. [2016])

%xT(x — Denoi(x)) [Regularization by Denoising (RED)]
under the Plug-and-Play (PnP) framework (Goudarzi et al.
[2022])

(3) Sparsity in wavelet domain

||dﬂ\xH1, where 1) = %[’l[q,?l&, ..., ¥g] (Zhang et al.
[2021]/Carrillo et al. [2015]/Carrillo et al. [2013])
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Solving the Inverse Problem of Ultrasound Image Reconstruction

Solving. y=Hx+n by & =argmin3|ly —Hx|]3 + ¢reg

State-of-the-art : ¢, based on the prior assumptions [1-4] / data-adaptive [5]

(1) Smoothness in frequency domain

1 [W;Dyabs(Fx)|2 + & [|[W;Dsabs(Fx) |2, where F = (4) Sparsity in spatial domain

DrEV [(Oeier i =L ) Tikhonov — ||x||, and ||x||2 (Szasz et al. [2016])

use envelope — || Env(x)||; (Zhang et al. [2021])

(2) Smoothness in spatial domain

ID1Env(x)||; + [D2Env(x)||, (Zhang et al. [2021]) (5) Data-adaptive
||Vx||§ (Bodnariuc et al. [2016])

%xT(x — Denoi(x)) [Regularization by Denoising (RED)]
under the Plug-and-Play (PnP) framework (Goudarzi et al.
[2022])

(3) Sparsity in wavelet domain

||dﬂ\xH1, where 1) = %[’l[q,?l&, ..., ¥g] (Zhang et al.

Solve with Deep Neural Networks ?
[2021]/Carrillo et al. [2015]/Carrillo et al. [2013])
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Solving the Inverse Problem of Ultrasound Image Reconstruction

Y—— DN —X

update I
Fidelity +

reg
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Solving the Inverse Problem of Ultrasound Image Reconstruction

y— bnN ——X y ]
update X — T F'ﬂeNl'ty — ¢r@g G K
Fidelity + ¢m al L . —
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Solving the Inverse Problem of Ultrasound Image Reconstruction

Y—— DN —X

update

Fidelity + ¢

regi

® Self-Supervised (Zhang et al. [2021]) ® Supervised Unrolling (Luijten et al. [2023])

Fidelity [HX,y] [ Pr.s Dased on the prior assumptions] Fidelity [, x| Learned ¢,,

inaccurate prior knowledge ‘—l requires alot of [L.Q, H.Q]data pairs

® Fully Supervised (Perdios et al. [2022])

Fidelity[X, x] Not leverage ¢,

eq Common drawback :
requiresa lot of [L.. Q, H.Q]data pairs 1 Trained DNN <—> 1 Inverse Problem Model J

[Med Image Anal] Ultrasound Image Reconstruction from Plane Wave Radio-Frequency Data by Self-Supervised Deep Neural Network (Zhang et al. [2021])
[IEEE TUFFC] CNN-based Image Reconstruction Method for Ultrafast Ultrasound Imaging (Perdios et al. [2022])
[IEEE ICASSP] Neural Maximum-a-Posteriori Beamforming for Ultrasound Imaging (Luijten et al. [2023])
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Solving the Inverse Problem of Ultrasound Image Reconstruction

Prior < Likelihood = Posterior

® |everage the Generative Priors
+ One Trained Generative model <—> One Unlimited Inverse Problem Models
+ assumed learned prior
+ {EQHQ} HQ required for training

The solving methods can be adapted to other inverse problems )
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Diffusion Models

* Generative Models : Diffusion Models

Forward diffusion process

Data

Reverse denoising process
Generate data from noise by denoising, learned
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Diffusion Models

Unconditional sampling :

= PRLAL.

Reverse denoising process
Generate data from noise by denoising, learned

Noise
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Figure — Unconditional CIFAR10 progressive generation (Ho
et al. [2020]).

30 - June - 2023

Yuxin Zhang (LS2N-SIMS)



Diffusion Models

Unconditional sampling : Conditional sampling :
. Noise

Data ¥ Wi &= | Noise L e
Data .

Reverse denoising process i
. e Reverse dendiging process
Generate data from noise by denoising, learned . L
Generate data from noise Dxdenoising, learned
Yi= H aXqtng
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Figure — Generation process of a conditioned generator.

Figure — Unconditional CIFAR10 progressive generation (Ho
et al. [2020]).

30 - June - 2023

ED seminar - 2023

Yuxin Zhang (LS2N-SIMS)



Denoising Diffusion Restoration Models

Start with a simple case :
[Diagonal]
Ya=Hgxs+ny

[Noisy observation] [Noise, i.i.d Gaussian, known variance]

[NeurlPS] Denoising Diffusion Restoration Models (Kawar et al. [2022])
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. /

[NeurlPS] Denoising Diffusion Restoration Models (Kawar et al. [2022])
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Denoising Diffusion Restoration Models

Start with a simple case :
[Diagonal]
Ya=Hgxs+ny

[Noisy observation] [Noise, i.i.d Gaussian, known variance]

XAI

F— Diffusion Mode| | gmmf=tss
prediction

. /

[NeurlPS] Denoising Diffusion Restoration Models (Kawar et al. [2022])
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Denoising Diffusion Restoration Models

Start with a simple case :
[Diagonal]
Ya=Hgxs+ny

[Noisy observation] [Noise, i.i.d Gaussian, known variance]

Xo

ﬂandom noise

XAI X!

ﬂ— Diffusion Mode| | <
prediction

[NeurlPS] Denoising Diffusion Restoration Models (Kawar et al. [2022])

Linear Combination

&)
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Denoising Diffusion Restoration Models

Most general case : any linear inverse problem
U b)) VT

k Xk kxn nxn

H,=UxzV'

In

H is “diagonal” in transformed space from SVD

ﬁ ZTUTyd:VTXd+ZTUTnd

A ) _
\,,\yd:xd+nd

|4

DDRM: run “denoising and/or inpainting”, but in the space transformed by SVD

[NeurlPS] Denoising Diffusion Restoration Models (Kawar et al. [2022])
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From y = Hx + n to By = BHx + Bn

(HEIRKLXN) (X€|RNX1) (neIRKLxl) (yeIRKLXI)

L
x:reflectivity map
n:white noise
y :channel data

K :number of time samples
L:number of channels
N=N,XN,: number of pixels

Figure — Forward model of ultrasound image reconstruction
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From y = Hx + n to By = BHx + Bn

(HEIRKLXN) (X€|RNX1) (neIRKLxl) (yeIRKLXI)

L
x:reflectivity map
n:white noise
y :channel data

K :number of time samples
L:number of channels
N=N,XN,: number of pixels

Figure — Forward model of ultrasound image reconstruction

Yuxin Zhang (LS2N-SIMS) ED seminar - 2023

Problem : TOO MUCH data to control !

Solution :
COMPRESS the data by applying an operator B H*

(B eRV)

Figure — Matrix B
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From y = Hx + n to By = BHx + Bn

(HEIRKLXN) (X€|RNX1) (neIRKLxl) (yeIRKLXI)

L

x:reflectivity map
n:white noise
y :channel data

K :number of time samples
L:number of channels
N=N,XN,: number of pixels

Figure — Forward model of ultrasound image reconstruction
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.Nz +n _ Then :

(BHER™™) (xeR™") (BneR™™) (ByeR"™)

Figure — Data-compressed forward model

30 - June - 2023



From y = Hx + n to By = BHx + Bn

(HEIRKLXN) (X€|RNX1) (neIRKLxl) (yeIRKLXI)

B (BHER™™) (xeR™") (BneR™™) (ByeR"™)

L

x:reflectivity map
n:white noise

y :channel data Figure — Data-compressed forward model
K :number of time samples Conflict : ) _
L:number of channels colored noise Bn does not meet the assumption of

N=N,XN,: number of pixels DDRM
Solution : Apply a whitening operator C

Figure — Forward model of ultrasound image reconstruction
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From By = BHx + Bn to CBy = CBHx + CBn

NXN NX1 NX1 N X1
(HEIRKLXN) (XGIRle) (nelRKLxl) (yeIRKLXI) (BHeR"™) (xeR™) (BneR"™™) (ByeR™™")
B - =
z +n =
N, K

Figure — Data-compressed forward model

L
x :reflectivity map
n:white noise
y :channel data (cBHeR™™) (xeR™") (CBneR™') (CcByeR™")
+CBn = f
K :number of time samples .
L: number of channels M( <N)

N=N_ XN,: numberof pixels

N

Figure — Forward model of ultrasound image reconstruction Figure — Noise-whitened and data-compressed forward model

Yuxin Zhang (LS2N-SIMS) ED seminar - 2023 30 - June - 2023



Solve the Inverse Problem of Ultrasound Image Reconstruction with DDRM

Inverse Problem Models :
U By = BHx + Bn (DRUS)

se CBy — CBHx + CBn (WDRUS) to recover x with the given y.

Test set : PICMUS dataset (Liebgott et al. [2016]) gives the observation y.

Figure — Examples of PICMUS reconstructed ultrasound images

Diffusion Model :

Fine-tune the public-available one which was trained on the ImageNet dataset (1,281,167
images) (Russakouisiss Lol e v g

T

Figure — Examples of the fine-tune set (800 images)
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Results : compare against the reference

L.Q. (DAS1)

By = BHx + Bn (DRUS)

Diffusion Model

CBy = CBHx + CBn (WDRUS)

Golden standard (DAS75)
(use more channel data)
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Results : compare against the reference

L.Q. (DAS1)
Resolution
(FWHM [mm]l) | contrast
_ (CNR[dB] 1)
DRUS Axial Lateral
DAS1 0.51 1.21 8.15
DRUS 0.26 0.69 12.9
WDRUS
WDRUS 0.25 0.62 11.95
DAS75 0.49 0.59 12.05
Golden standard

(DAS75)
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Conclusion and Future work

Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models
+ 1 pre-trained Diffusion Model — different Inverse Problem Models J

+ training-from-serateh Fine-tuning with [EQ , HQ] image pairs

- Artifacts
- Requiring the SVD of the model matrix ’

DGM4MICCAI workshop at MICCAI 2023 (submit)
Future work :
® Enlarging the train/test dataset

® Removing the dependency on SVD
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