Ultrasound Image Reconstruction with Deep Learning ED seminar - 2023

Yuxin Zhang^{1,2} Supervisors : Clément Huneau^{1,3}, Jérôme Idier^{1,4}, Diana Mateus^{1,2}

¹LS2N, ²Centrale Nantes, ³Nantes Université, ⁴CNRS, Nantes, France.

30 - June - 2023

Context

Medical Ultrasound Image Reconstruction Workflow

Inverse Problem of Ultrasound Image Reconstruction

2 Diffusion Models serve as Inverse Problem solvers

Diffusion Models

Denoising Diffusion Restoration Models

Our work

Forward Models of Ultrasound Image Reconstruction

Results

Conclusion and Future work

Medical Ultrasound Image Reconstruction Workflow

Medical Ultrasound Image Reconstruction Workflow

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$

x : reflectivity map

H : model matrix

with the info. of -time delay -pulse-echo response

y : channel data

Solving
$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$
 by $\hat{\mathbf{x}} = \arg\min_{\hat{\mathbf{x}}} \frac{1}{2} ||\mathbf{y} - \mathbf{H}\mathbf{x}||_2^2 + \phi_{reg}$

State-of-the-art : ϕ_{reg} based on the prior assumptions [1-4] / data-adaptive [5]

(1) Smoothness in frequency domain

 $\frac{1}{2}\|\mathbf{W}_f\mathbf{D}_1\mathrm{abs}(\mathbf{Fx})\|_2^2+\frac{1}{2}\|\mathbf{W}_f\mathbf{D}_2\mathrm{abs}(\mathbf{Fx})\|_2^2,$ where $\mathbf{F}=$ DCT (Ozkan et al. [2018])

(2) Smoothness in spatial domain

 $\|\mathbf{D}_{1} \operatorname{Env}(\mathbf{x})\|_{1} + \|\mathbf{D}_{2} \operatorname{Env}(\mathbf{x})\|_{1}$ (Zhang et al. [2021]) $\|\nabla \mathbf{x}\|_{2}^{2}$ (Bodnariuc et al. [2016])

(3) Sparsity in wavelet domain

 $\begin{aligned} \left\|\psi^{\dagger}\mathbf{x}\right\|_{1}, \text{ where } \psi &= \frac{1}{\sqrt{8}}[\psi_{1},\psi_{2},...,\psi_{8}] \text{ (Zhang et al.} \\ \text{[2021]/Carrillo et al. [2015]/Carrillo et al. [2013])} \end{aligned}$

(4) Sparsity in spatial domain

 $\begin{array}{l} \mathsf{Tikhonov} - \left\|\mathbf{x}\right\|_1 \text{ and } \left\|\mathbf{x}\right\|_2^2 (\mathsf{Szasz et al. [2016]}) \\ \mathsf{use envelope} - \left\|Env(\mathbf{x})\right\|_1 (\mathsf{Zhang et al. [2021]}) \end{array}$

(5) Data-adaptive

 $\frac{1}{2}\mathbf{x}^{T}(\mathbf{x} - Denoi(\mathbf{x})) \quad [\text{Regularization by Denoising (RED)}] \\ \text{under the Plug-and-Play (PnP) framework (Goudarzi et al. [2022])}$

Solving
$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$
 by $\hat{\mathbf{x}} = \arg\min_{\hat{\mathbf{x}}} \frac{1}{2} ||\mathbf{y} - \mathbf{H}\mathbf{x}||_2^2 + \phi_{reg}$

State-of-the-art : ϕ_{reg} based on the prior assumptions [1-4] / data-adaptive [5]

(1) Smoothness in frequency domain

 $\frac{1}{2}\|\mathbf{W}_f\mathbf{D}_1\mathrm{abs}(\mathbf{Fx})\|_2^2+\frac{1}{2}\|\mathbf{W}_f\mathbf{D}_2\mathrm{abs}(\mathbf{Fx})\|_2^2$, where $\mathbf{F}=$ DCT (Ozkan et al. [2018])

(2) Smoothness in spatial domain

$$\begin{split} \|\mathbf{D}_{1}\mathrm{Env}(\mathbf{x})\|_{1} + \|\mathbf{D}_{2}\mathrm{Env}(\mathbf{x})\|_{1} \text{ (Zhang et al. [2021])} \\ \|\nabla \mathbf{x}\|_{2}^{2} \text{ (Bodnariuc et al. [2016])} \end{split}$$

(3) Sparsity in wavelet domain

 $\begin{aligned} \left\|\psi^{\dagger}\mathbf{x}\right\|_{1}, \text{ where } \psi &= \frac{1}{\sqrt{8}}[\psi_{1}, \psi_{2}, ..., \psi_{8}] \text{ (Zhang et al.} \\ \text{[2021]/Carrillo et al. [2015]/Carrillo et al. [2013])} \end{aligned}$

(4) Sparsity in spatial domain

 $\begin{array}{l} \mathsf{Tikhonov} - \left\|\mathbf{x}\right\|_1 \text{ and } \left\|\mathbf{x}\right\|_2^2 (\mathsf{Szasz et al. [2016]}) \\ \mathsf{use envelope} - \left\|Env(\mathbf{x})\right\|_1 (\mathsf{Zhang et al. [2021]}) \end{array}$

(5) Data-adaptive

 $\frac{1}{2} \mathbf{x}^T (\mathbf{x} - Denoi(\mathbf{x}))$ [Regularization by Denoising (RED)] under the Plug-and-Play (PnP) framework (Goudarzi et al. [2022])

Solve with Deep Neural Networks?

Solving the Inverse Problem of Ultrasound Image Reconstruction

Solving the Inverse Problem of Ultrasound Image Reconstruction

 $\phi_{\rm reg}$ based on the prior assumptions

Not leverage ϕ_{reg} Common drawback :

 \rightarrow requires a lot of [L, Q, H, Q] data pairs

inaccurate prior knowledge •

Common drawback : 1 Trained DNN <-> 1 Inverse Problem Model

[Med Image Anal] Ultrasound Image Reconstruction from Plane Wave Radio-Frequency Data by Self-Supervised Deep Neural Network (Zhang et al. [2021]) [IEEE TUFFC] CNN-based Image Reconstruction Method for Ultrafast Ultrasound Imaging (Perdios et al. [2022]) [IEEE ICASSP] Neural Maximum-a-Posteriori Beamforming for Ultrasound Imaging (Luijten et al. [2023])

• Self-Supervised (Zhang et al. [2021])

• Fully Supervised (Perdios et al. [2022])

Fidelity $[H\hat{x}, v]$

Fidelity $[\hat{\mathbf{x}}, \mathbf{x}]$

Solving the Inverse Problem of Ultrasound Image Reconstruction

Prior \times Likelihood \longrightarrow Posterior

• Leverage the Generative Priors

+ One Trained Generative model < —> One Unlimited Inverse Problem Models

+ assumed learned prior

+ [LQ, HQ] HQ required for training

The solving methods can be adapted to other inverse problems

Context

Medical Ultrasound Image Reconstruction Workflow

Inverse Problem of Ultrasound Image Reconstruction

@ Diffusion Models serve as Inverse Problem solvers

Diffusion Models

Denoising Diffusion Restoration Models

Our work

Forward Models of Ultrasound Image Reconstruction

Results

Conclusion and Future work

* Generative Models : Diffusion Models

Forward diffusion process Gradually add noise to input, fixed

Noise

Reverse denoising process Generate data from noise by denoising, learned

Diffusion Models

Unconditional sampling :

Noise

Reverse denoising process Generate data from noise by denoising, learned

Figure – Unconditional CIFAR10 progressive generation (Ho et al. [2020]).

Diffusion Models

Unconditional sampling :

Data

Reverse denoising process Generate data from noise by denoising, learned Conditional sampling :

Figure – Unconditional CIFAR10 progressive generation (Ho et al. [2020]).

Reverse denoting process Generate data from noise by denoising, learned $y_d = H_d x_d + n_d$

Figure – Generation process of a conditioned generator.

Noise

Start with a simple case :

$$\frac{y_d}{y_d} = \frac{H_d}{H_d} x_d + n_d$$

Start with a simple case :

Most general case : any linear inverse problem

$$H_d = U \Sigma V^T$$

H is "diagonal" in transformed space from SVD

$$\sum_{i=1}^{\Sigma^{\dagger} U^{T} y_{d} = V^{T} x_{d} + \Sigma^{\dagger} U^{T} n_{d}}$$
$$\sum_{i=1}^{\Sigma^{\dagger} U^{T} x_{d} + \overline{n_{d}}}$$

DDRM: run "denoising and/or inpainting", but in the space transformed by SVD

[NeurIPS] Denoising Diffusion Restoration Models (Kawar et al. [2022])

Yuxin Zhang (LS2N-SIMS)

ED seminar - 2023

Context

Medical Ultrasound Image Reconstruction Workflow

Ø Diffusion Models serve as Inverse Problem solvers

Diffusion Models

Denoising Diffusion Restoration Models

Our work

Forward Models of Ultrasound Image Reconstruction

Results

Conclusion and Future work

Figure - Forward model of ultrasound image reconstruction

Figure - Forward model of ultrasound image reconstruction

Problem : TOO MUCH data to control !

Solution :

COMPRESS the data by applying an operator $\mathbf{B} {\approx} \mathbf{H^t}$

 $\mathsf{Figure}-\mathsf{Matrix}\;\mathbf{B}$

Figure - Forward model of ultrasound image reconstruction

Figure - Forward model of ultrasound image reconstruction

Figure – Data-compressed forward model

Conflict :

colored noise \mathbf{Bn} does not meet the assumption of DDRM

Solution : Apply a whitening operator ${\bf C}$

From $\mathbf{B}\mathbf{y} = \mathbf{B}\mathbf{H}\mathbf{x} + \mathbf{B}\mathbf{n}$ to $\mathbf{C}\mathbf{B}\mathbf{y} = \mathbf{C}\mathbf{B}\mathbf{H}\mathbf{x} + \mathbf{C}\mathbf{B}\mathbf{n}$

Figure - Noise-whitened and data-compressed forward model

Solve the Inverse Problem of Ultrasound Image Reconstruction with DDRM

Test set : PICMUS dataset (Liebgott et al. [2016]) gives the observation y.

Figure – Examples of PICMUS reconstructed ultrasound images

Diffusion Model :

Fine-tune the public-available one which was trained on the ImageNet dataset (1,281,167

images) (Russako el contentioned a la contentional de la contentional de la contention de l

Figure – Examples of the fine-tune set (800 images)

Results : compare against the reference

Results : compare against the reference

Ultrasound Image Reconstruction with Denoising Diffusion Restoration Models

- $+ \ 1$ pre-trained Diffusion Model \rightarrow different Inverse Problem Models
- + training from scratch Fine-tuning with [LQ , HQ] image pairs
- Artifacts
- Requiring the SVD of the model matrix

DGM4MICCAI workshop at MICCAI 2023 (submit)

Future work :

- Enlarging the train/test dataset
- Removing the dependency on SVD

Thank you !

References I

Ecaterina Bodnariuc, Martin Schiffner, Stefania Petra, and Christoph Schnörr. Plane wave acoustic superposition for fast ultrasound imaging. In 2016 IEEE International Ultrasonics Symposium (IUS), pages 1–4. IEEE, 2016.

Rafael E Carrillo, Jason D McEwen, Dimitri Van De Ville, Jean-Philippe Thiran, and Yves Wiaux. Sparsity averaging for compressive imaging. IEEE Signal Processing Letters, 20(6) :591-594, 2013.

- Rafael E Carrillo, Adrien Besson, Miaomiao Zhang, Denis Friboulet, Yves Wiaux, Jean-Philippe Thiran, and Olivier Bernard. A sparse regularization approach for ultrafast ultrasound imaging. In 2015 IEEE International Ultrasonics Symposium (IUS), pages 1–4. IEEE, 2015.
- Sobhan Goudarzi, Adrian Basarab, and Hassan Rivaz. Inverse problem of ultrasound beamforming with denoising-based regularized solutions. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(10):2906-2916, 2022. doi: 10.1109/TUFFC.2022.3198874.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33 :6840-6851, 2020.
- Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models. In ICLR Workshop on Deep Generative Models for Highly Structured Data, 2022. URL https://openreview.net/forum?id=BExXihVOVWq.
- H. Liebgott, A. Rodriguez-Molares, F. Cervenansky, J.A. Jensen, and O. Bernard. Plane-wave imaging challenge in medical ultrasound. In IEEE IUS, pages 1-4, 2016.
- Ben Luijten, Boudewine W. Ossenkoppele, Nico de Jong, Martin D. Verweij, Yonina C. Eldar, Massimo Mischi, and Ruud J.G. van Sloun. Neural maximum-a-posteriori beamforming for ultrasound imaging. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5, 2023. doi : 10.1109/ICASSP40357.2023.10096073.
- E. Ozkan, V. Vishnevsky, and O. Goksel. Inverse problem of ultrasound beamforming with sparsity constraints and regularization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(3):356–365, 2018. doi: 10.1109/TUFFC.2017.2757880.
- Dimitris Perdios, Manuel Vonlanthen, Florian Martinez, Marcel Arditi, and Jean-Philippe Thiran. Cnn-based image reconstruction method for ultrafast ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(4):1154–1168, 2022. doi: 10.1109/TUFFC.2021.3131383.
- Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet large scale visual recognition challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
- Teodora Szasz, Adrian Basarab, and Denis Kouamé. Beamforming through regularized inverse problems in ultrasound medical imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 63(12):2031–2044, 2016.
- Jingke Zhang, Qiong He, Yang Xiao, Hairong Zheng, Congzhi Wang, and Jianwen Luo. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network. Medical Image Analysis, 70 :102018, 2021. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.2021.102018.