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DRUSmean : reflectivity estimator, XpruSmean = éz(i] X,
1/ Background DRUSvar : echogenicity estimator, Pprusvar = C1_1 ZCC:1 1R — XDRUSMean 2

Ultrasound (US) imaging is valued in medical diagnostics for its real-time, affordability, i
portability, and minimal invasiveness. However, conventional algorithms often yield subop- 4/ Expe“mental results

timal image quality in terms of SNR, contrast, and spatial resolution. Recently, there has

been progress in both model-based and learning- based approaches addressing the problem ® Using a single plane wave (PW) with the delay-and-sum (DAS) method, calculated

as B1yy, establishes the baseline.

e Employing 75 PWs with DAS, formulated as ZZ; By, establishes the gold
standard.

DENO[3] and DRUS[1] underwent 50 iteration steps for each sample, and each

mean/variance image was constructed with C = 10 samples.

1IPW 1PW 1PW
DENOmean ~ DRUSmean DRUSvar(proposed)

of ultrasound image reconstruction. Bringing the best from both worlds, We propose a hy-

brid model-based deep learning solution that incorporates a physical model and a learned

diffusion model and thus, does not require retraining for a new task [1].
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2/ Ultrasound imaging inverse problem
The traditional inverse problem model of plane-wave US imaging is : cc £ £
model reflectivity echogenicity 3 e
maitrix map map
in:(><1 :HFXNXNX‘I_I_II{(X]’ whereX:mNm@pNX], K >N :2562
measured additive multiplicative CL E E
signals noise noise g 2
To compress the huge matrix H, we project the measurements to the image domain by — —— ——
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using a weighted matched filter matrix B € RN*X | | | | t

Figure 2 — Comparison of reconstructed images on the PICMUS datasets. All images are

Bi}’i = BiHiX + Biﬂi (1)

in decibels with a dynamic range [-60,0].

Table 1 — Quantitative comparison to SOTAs on the PICMUS phantom-based datasets.

Best values bolded, second-best underlined.

3/ Diffusion Reconstruction of US images

We proposed DRUS (Diffusion Reconstruction of US images|1]) employing DDRM (De-

. _ _ _ _ _ DAS EMV  MNV2 DNN-A* DENOmean DRUSmean DRUSvar
noising Diffusion Restoration Models[2]) to estimate x from a single PW based on (1). (75PWs) (IPW) (IPW) (IPW) (IPW)  (1PW) (1PW) (1PW)
£c gCNRT 0.95 0.87 083 0.83 / 0.95 0.97 0.98
SNRT 192 197/ / / 1.93 1.87 3.03
FWHM A| 0.54 056 059 053 0.52 0.31 0.24 0.34
| . . ER [mm] L. 056 087 042 077 052 0.64 0.54 0.32
easurements . . 0} . —
Pure ﬁoise o [ i cleaﬁlsample gCNRT 0.77 0.69 / / / 0.95 0.95 1.00
Figure 1 — Conditional diffusion sampling.
DDRM runs "denoising" in the space transformed by svd(BH). 5/ Comparison against a despeckling method
By = BHx + Bn
BH=U = VI d T
5; ZTUTB _ T ik adl
S, 2 y= ¥ x +2'U By
noisy signal clean signal noise
Assuming that Bn ~ N(O,yzl), each element in ZTU"Bn is compared to the diffusion
noise with variance 0% (t =1,...,T) :
i -‘ . Figure 3 — Visual comparison of despeckled images on the CC dataset, in decibels [-60,0]
S) S 0¢, believe the measurements; dynamic range. ADMSS is an US despeckling method applied on beamformed images be-
. S fore log compression.
ZTU Bn ~ N 0, % > o7, rely on both the measurements
3i and the diffusion prior; )
. 6/ Conclusion
Lz J = 400, believe the diffusion prior.
Sk

Given the nature of multiplicative noise inherent to ultrasound, and the stochasticity of

diffusi ling, | lication of DRUS [1] and introduce DRUSva
In a simple denoising scenario, multiple diffusion samples give different results depending THLSION SAMPING, WE EXPIOre 4 NEW application © [} and introduce varas

an ultrasound echogenicity map estimator. We conduct experiments on real data, demons-

on the absence or presence of multiplicative noise.

Observation Mean Variance

Elp]

trating the efficacy of the proposed variance imaging approach in achieving high-quality
Var|p] image reconstructions from single plane-wave acquisitions and in comparison to state-of-

the-art methods.
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