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1/ Background

Ultrasound (US) imaging is valued in medical diagnostics for its real-time, affordability,
portability, and minimal invasiveness. However, conventional algorithms often yield subop-
timal image quality in terms of SNR, contrast, and spatial resolution. Recently, there has
been progress in both model-based and learning- based approaches addressing the problem
of ultrasound image reconstruction. Bringing the best from both worlds, We propose a hy-
brid model-based deep learning solution that incorporates a physical model and a learned
diffusion model and thus, does not require retraining for a new task [1].

2/ Ultrasound imaging inverse problem

The traditional inverse problem model of plane-wave US imaging is :

To compress the huge matrix H, we project the measurements to the image domain by
using a weighted matched filter matrix B ∈ RN×K :

Biyi = BiHix + Bini (1)

3/ Diffusion Reconstruction of US images

We proposed DRUS (Diffusion Reconstruction of US images[1]) employing DDRM (De-
noising Diffusion Restoration Models[2]) to estimate x from a single PW based on (1).

Figure 1 – Conditional diffusion sampling.

DDRM runs "denoising" in the space transformed by svd(BH).

Assuming that Bn ∼ N
0, γ2I

, each element in Σ†U⊤Bn is compared to the diffusion
noise with variance σ2

t (t = 1, . . . , T ) :

In a simple denoising scenario, multiple diffusion samples give different results depending
on the absence or presence of multiplicative noise.

DRUSmean : reflectivity estimator, x̂DRUSmean =
1
C

∑C
c=1 x̂c

DRUSvar : echogenicity estimator, p̂DRUSvar =
1

C−1

∑C
c=1 |x̂c − x̂DRUSmean|

2

4/ Experimental results
• Using a single plane wave (PW) with the delay-and-sum (DAS) method, calculated

as B1y1, establishes the baseline.
• Employing 75 PWs with DAS, formulated as

∑75
i=1 Biyi, establishes the gold

standard.
DENO[3] and DRUS[1] underwent 50 iteration steps for each sample, and each
mean/variance image was constructed with C = 10 samples.
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Figure 2 – Comparison of reconstructed images on the PICMUS datasets. All images are
in decibels with a dynamic range [-60,0].

Table 1 – Quantitative comparison to SOTAs on the PICMUS phantom-based datasets.
Best values bolded, second-best underlined.

DAS EMV MNV2 DNN-λ∗ DENOmean DRUSmean DRUSvar
(75PWs) (1PW) (1PW) (1PW) (1PW) (1PW) (1PW) (1PW)

EC gCNR↑ 0.95 0.87 0.83 0.83 / 0.95 0.97 0.98
SNR↑ 1.92 1.97 / / / 1.93 1.87 3.03

ER
FWHM
[mm]

A↓ 0.54 0.56 0.59 0.53 0.52 0.31 0.24 0.34
L↓ 0.56 0.87 0.42 0.77 0.52 0.64 0.54 0.32

gCNR↑ 0.77 0.69 / / / 0.95 0.95 1.00

5/ Comparison against a despeckling method

Figure 3 – Visual comparison of despeckled images on the CC dataset, in decibels [-60,0]
dynamic range. ADMSS is an US despeckling method applied on beamformed images be-
fore log compression.

6/ Conclusion
Given the nature of multiplicative noise inherent to ultrasound, and the stochasticity of
diffusion sampling, we explore a new application of DRUS [1] and introduce DRUSvar as
an ultrasound echogenicity map estimator. We conduct experiments on real data, demons-
trating the efficacy of the proposed variance imaging approach in achieving high-quality
image reconstructions from single plane-wave acquisitions and in comparison to state-of-
the-art methods.
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